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The relentless expansion of deep learning (DL) applications in recent years has prompted a pivotal shift
towards on-device execution, driven by the urgent need for real-time processing, heightened privacy concerns,
and reduced latency across diverse domains. This paper addresses the challenges inherent in optimising the
execution of deep neural networks (DNNs) on mobile devices, with a focus on device heterogeneity, multi-
DNN execution, and dynamic runtime adaptation. We introduce CARIn, a novel framework designed for the
optimised deployment of both single- and multi-DNN applications under user-defined service-level objectives
(SLOs). Leveraging an expressive multi-objective optimisation (MOO) framework and a runtime-aware sorting
and search algorithm (RASS) as the MOO solver, CARIn facilitates efficient adaptation to dynamic conditions
while addressing resource contention issues associated with multi-DNN execution. Notably, RASS generates a
set of configurations, anticipating subsequent runtime adaptation, ensuring rapid, low-overhead adjustments in
response to environmental fluctuations. Extensive evaluation across diverse tasks, including text classification,
scene recognition, and face analysis, showcases the versatility of CARIn across various model architectures,
such as Convolutional Neural Networks (CNNs) and Transformers, and realistic use cases. We observe a
substantial enhancement in the fair treatment of the problem’s objectives, reaching 1.92× when compared to
single-model designs, and up to 10.69× in contrast to the state-of-the-art OODIn framework. Additionally, we
achieve a significant gain of up to 4.06× over hardware-unaware designs in multi-DNN applications. Finally,
our framework sustains its performance while effectively eliminating the time overhead associated with
identifying the optimal design in response to environmental challenges.
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1 INTRODUCTION
In recent years, the pervasive growth of deep learning (DL) applications has catalysed a paradigm
shift in the field of artificial intelligence, rendering on-device execution a critical imperative [69].
The burgeoning demand for sophisticated deep neural networks (DNNs) spans a myriad of domains,

Authors’ addresses: Ioannis Panopoulos, ioannispanop@mail.ntua.gr, National Technical University of Athens, Athens,
Greece; Stylianos I. Venieris, Samsung AI Center, Cambridge, UK, s.venieris@samsung.com; Iakovos S. Venieris, venieris@
cs.ece.ntua.gr, National Technical University of Athens, Athens, Greece.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Association for Computing Machinery.
1539-9087/2024/8-ART111 $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2024.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


111:2 Ioannis Panopoulos, Stylianos I. Venieris, and Iakovos S. Venieris

from computer vision to natural language processing, necessitating the deployment of these models
directly on mobile devices. This shift from centralised to decentralised computation arises from
the intrinsic requirements of real-time processing, enhanced privacy concerns, and the need for
reduced latency in diverse applications. As a consequence, the optimisation of executing deep
neural networks on-device has emerged as a paramount research frontier.
While the shift towards on-device execution of DNNs represents a pivotal advancement, it is

not without its formidable challenges. Device heterogeneity, characterised by the diverse array
of hardware and computational capabilities across mobile devices, remains a persistent hurdle.
Moreover, emerging challenges, such as the simultaneous execution of multiple DNNs on a single
device [60] and the need for dynamic runtime adaptation [64] to evolving environmental conditions,
add layers of complexity to the optimisation landscape. Multi-DNN execution introduces intricate
dependencies and resource contention issues, necessitating sophisticated orchestration strategies.
Runtime adaptation, on the other hand, mandates the development of intelligent mechanisms capa-
ble of dynamically adjusting model parameters and system configurations to optimise performance
in real-time scenarios. Addressing these challenges is paramount to unlocking the full potential of
on-device deep learning, as it paves the way for the seamless integration of advanced AI capabilities
into the fabric of our interconnected devices.
Enhancing the work presented in [61], namely OODIn, this paper presents CARIn, a novel

framework for the optimised deployment of both single- and multi-DNN applications on mobile
devices. The initial work in [61] focused primarily on presenting a new highly parametrised software
architecture for DL mobile apps, optimising single-DNN applications and evaluating solely on
the image classification task. In this paper, we build upon the architecture of OODIn that allows
us to efficiently modify model and system parameters, and introduce two novel components in
order to meet the new demands of model multi-tenancy and efficient runtime adaptability. First,
we develop an expressive multi-objective optimisation (MOO) framework that allows us to capture
both single- and multi-DNN workloads and to formally model the performance requirements and
constraints of DL applications. Second, we present RASS, a runtime-aware MOO solver that enables
rapid, low-overhead adaptation while sustaining high performance under dynamic conditions.
Contrary to existing optimisers that yield a single execution plan for a given device [28, 62], our
solver generates a set of configurations to accommodate potential variations in resource availability.
This eliminates the necessity to continually adjust and resolve the MOO problem whenever a
runtime issue arises. Additionally, we broaden the scope of targeted tasks and further augment
this by conducting a comprehensive evaluation spanning various model architectures, including
Convolutional Neural Networks (CNNs) and Transformers, across a spectrum of realistic scenarios
characterised by diverse performance demands.

2 BACKGROUND & RELATEDWORK
2.1 Problem Statement
The primary aim of a DL application is to consistently uphold its performance goals or service-level
objectives (SLOs), often referred to as quality of service (QoS) targets. These SLOs encompass a
multifaceted range of critical metrics, including but not confined to accuracy, latency, throughput,
memory utilisation and energy consumption. Achieving and sustaining these objectives requires
careful consideration of the specific demands inherent to a given application or system. It is crucial to
recognise that this challenge is compounded by two primary factors: (a) the inherent heterogeneity
and (b) the dynamic nature of mobile and embedded devices. Adding to this complexity is the
increasingly prevalent use of multiple models within DL applications, which places additional
demands on the already intricate ecosystem of these devices.
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2.1.1 Device Heterogeneity. Compact devices involve a wide array of hardware configurations,
characteristics, and capabilities, leading to a significant level of diversity [1, 2, 22, 66]. This diversity
manifests not only across distinct devices, which is referred to as "inter-device heterogeneity,"
but also within individual devices, a concept known as "intra-device heterogeneity." Inter-device
heterogeneity reflects the variations in size, processing power, memory capacity, energy efficiency,
and more, across different devices. For example, a high-end smartphone will have markedly different
hardware specifications than a low-cost IoT sensor node, illustrating the extent of diversity that
exists across various devices. Intra-device heterogeneity, on the other hand, arises from the presence
of multiple hardware components and subsystems within a device, each with its distinct attributes.
In a standard smartphone setup, for instance, one may encounter a CPU, a GPU, and an NPU, all
with varying clock speeds, energy consumption profiles, memory requirements, and parallelisation
capabilities. Due to device heterogeneity, it is very challenging to design a universal DL
model that performs efficiently across devices. For example, a model meticulously crafted
and optimised to run seamlessly on Google’s Edge TPU may encounter performance issues and
inefficiencies when deployed on a different processor, such as a conventional mobile GPU.
As a result, rather than pursuing a one-size-fits-all approach, where a single model is expected

to excel universally, the focus shifts towards creating models that are fine-tuned and optimised for
the unique features of each target device. These device-specific models are designed to leverage the
strengths of the hardware and maximise performance, thereby addressing the inherent challenges
associated with device heterogeneity.

2.1.2 Dynamic Environment. In contemporary mobile and embedded computing ecosystems, the
concurrent execution of multiple applications and processes is commonplace. This inherent multi-
tasking characteristic introduces notable fluctuations in resource availability andworkload demands,
thereby rendering the acquisition of sufficient resources for performant task execution a challenging
endeavour. Due to environment dynamicity, it is very challenging for a static execution
configuration to consistently satisfy the application’s SLOs at any given time. For instance,
if a user runs the application outdoors on a hot day, the device’s temperature may rise and thermal
throttling mechanisms can be triggered, causing the CPU or GPU to reduce their clock speeds to
prevent overheating [54], resulting in reduced throughput or execution slowdown.

Such scenarios necessitate the ability to dynamically adapt to changing conditions and varying
resource availability in real time. This adaptive behaviour is vital to ensure that the application
consistently maintains satisfactory performance levels despite the variability in its operational
environment.

2.1.3 Multiple DNNs. Today’s growing demand for more advanced and intelligent systems has
given rise to scenarios that mandate the simultaneous utilisation of multiple models, often referred
to as "multi-DNN" configurations [60]. This paradigm shift is mainly driven by the need to address
specific tasks or solve complex problems that demand a diversified approach, benefiting from
the combined expertise of multiple specialised models. Multi-DNN applications showcase a high
degree of adaptability in employing multiple models, as they can be harnessed to address a singular,
intricate task [24, 73] or several distinct, autonomous tasks [8, 36]. In the former scenario, models
typically exhibit interdependence and may require sequential execution, while in the latter scenario,
models operate independently, affording them the capability to run in parallel. The efficient
deployment of multi-DNN configurations introduces intricacies that pertain to resource
allocation and load distribution. Particularly, parallel model execution presents a notably more
intricate challenge compared to sequential execution, as models compete for the device’s finite
resources. This concurrent operation, coupled with the simultaneous management of multiple tasks,
amplifies the overall workload and poses new challenges to resource allocation and coordination.
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The attainment of seamless orchestration and effective collaboration among multiple specialised
models while upholding stringent performance and quality benchmarks stands as a substantial and
multifaceted challenge within the domain of multi-DNN applications.

2.2 Related Work
The field of on-device deep learning has witnessed significant advancements in addressing the
challenges posed by device heterogeneity and environment dynamicity in both single- and multi-
DNN use cases. This progress reflects a profound shift in the landscape of deep learning research,
where a growing emphasis has been placed on ensuring that DL models not only function effectively
but also meet specific SLOs across a spectrum of computational environments, ranging from
powerful high-end devices to resource-constrained edge computing platforms. Moreover, recent
efforts have explored the integration of MOO techniques to further enhance the adaptability and
efficiency of on-device DL solutions.

2.2.1 Service-Level Objectives. Most of the prior works directed towards achieving SLOs have
predominantly concentrated on scenarios involving multiple DNNs, primarily investigating the
trade-off between accuracy and latency. Within this domain, the majority is focused on system
development for edge servers [13, 29, 53, 83, 84], and only a limited number of studies have been
devoted to on-device execution, specifically by orchestrating multiple inference requests across
heterogeneous processors [24, 51, 73]. In contrast, our proposed framework demonstrates the
capability to accommodate a diverse array of SLOs, including but not limited to accuracy, latency,
memory footprint, size, and energy consumption, tailored for both single- and multi-DNN on-device
applications.

2.2.2 Multi-Objective Optimisation. MOO has been widely employed in conjunction with NAS
methodologies, culminating in the development of Multi-Objective Neural Architecture Search
(MONAS). This approach is particularly valuable for (a) designing DNNs with the goal of not
solely optimising the accuracy but also considering resource consumption [11, 23, 56], and (b) for
compressing pretrainedmodels [18, 40, 63]. Notably, our framework represents one of the pioneering
efforts to formulate and address device-specific MOO problems to achieve specific SLOs at the
system level.

2.2.3 Device-Specific Solutions. The majority of endeavours aimed at addressing device heterogene-
ity predominantly concentrate on the model level, i.e. by identifying the most fitting DL architecture
tailored to a specific hardware platform. Among the prominent model-level methodologies, neural
architecture search (NAS) and model scaling have a central role.
Hardware-aware NAS (HW-NAS) approaches seek to optimise DNN architectures both for

high predictive accuracy and for efficient execution on a target deployment platform. Its most
prominent premise is the inclusion of (a) hardware constraints, and (b) latency, energy and other
system metrics, as objectives during the search process [3, 4, 65, 80]. HW-NAS usually involves
performance prediction in order to guide the search algorithm. Nonetheless, estimating precise
latency, memory or energy figures can be challenging, and the method’s effectiveness heavily relies
on the accuracy of these estimates. Such approaches can also be computationally intensive due to
the need to train and evaluate a large number of candidate architectures.
Supernet-based NAS, also known as One-shot NAS, is an approach that leverages a supernet

along with weight sharing to facilitate efficient architecture search [6, 30, 35, 64]. A supernet is a
network containing all possible architectural choices of a given search space and it enables the
exploration of diverse neural architectures while significantly reducing computational overhead.
While this approach reduces the training-time computational requirements, it may not be as
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effective at tailoring architectures to specific hardware constraints and weight sharing may restrict
fine-grained control over architectural decisions.
Lastly, model scaling involves adjusting parameters such as the depth, width and input size

of a DNN to strike a balance between accuracy and efficiency [10, 58, 68]. This technique is
often applied along with NAS or knowledge distillation methods to also accommodate resource
constraints. However, model scaling might not fully exploit the unique hardware characteristics of
specific devices, potentially leading to sub-optimal performance.

2.2.4 Runtime Adaptation. In the context of runtime adaptation, research efforts span both the
model and system levels. On the model level, the primary focus revolves around the development
of techniques designed to dynamically adjust the model’s architecture in response to fluctuations
in resource availability. These adaptive models possess the capability to modify their architecture
and parameters in real time during inference, effectively responding to the evolving constraints of
the computing environment. Prominent examples of such models comprise adaptive supernets [7,
16, 43, 64], adaptive model scaling [20, 72, 77], multi-branch networks [17], early-exit models [4,
34], and a variety of other innovative approaches. However, crafting adaptive mechanisms that
seamlessly function across a diverse range of devices can pose significant technical challenges
and the adaptability of these networks may introduce certain computational overhead, potentially
impacting the performance of real-time applications. At the system level, complementary methods
come into play, including dynamic compression [38], adaptive model selection [31], and efficient
scheduling on available hardware [70], among others.

2.2.5 Multi-DNN Inference. To facilitate multi-DNN inference, researchers have also explored
solutions at both the model and system levels [60]. From the model perspective, the execution of
multiple DNNs aligns closely with the principles of multi-task learning [21, 49, 78, 82], a technique
that trains a single model to perform multiple related tasks simultaneously. Consequently, using a
single multi-task model for inference can replace the need for concurrent inferences from multiple
models. At the system level, most research efforts leverage the heterogeneous processors available
on devices and aim to identify the highest-performing mapping strategy. This is typically achieved
through approaches that partition the model at the layer level [24, 26, 27, 67] or by introducing task-
level priorities [37]. Additionally, there exists a body of research focused on multi-tenant inference
systems [12, 75], albeit predominantly concentrating on server-based configurations [71, 74] rather
than on-device implementations [60].

3 OVERVIEW OF CARIn
3.1 Proposed Solution
CARIn addresses the main challenges of on-device DL inference (Section 2.1) in two ways. First, we
introduce a novel approach of modelling DL applications, utilising a multi-objective optimisation
(MOO) framework to encapsulate their characteristics (Section 4). Given the rising number and
diversity of DL applications, CARIn is able to analytically represent their various performance
requirements and constraints, with the required expressivity to support both single- and multi-DNN
scenarios. Second, to enable runtime adaptation, we introduce RASS, a runtime-aware MOO solver
that allows for low-overhead and effective dynamic adjustment of the execution. The key principle
behind RASS’s design is to explicitly consider during the MOO solution stage that adaptation
may subsequently be required at deployment time. As such, RASS operates in two steps: i) it
generates a set of alternative execution configurations with diverse trade-offs prior to deployment,
and ii) configures the inference engine with a policy of switching among them.
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Fig. 1. High-level workflow of CARIn.

Towards alleviating the impact of device heterogeneity and resource fluctuation, CARIn operates
exclusively at the system level, bypassing the need to produce an optimal model for each target
device. Model-level solutions typically include the design, exploration, training, and adaptation of a
DNN’s architecture to specific target devices and resource availability changes. These procedures can
be cumbersome, time-consuming, and lead to complex pipelines. Instead, our framework employs a
repository of pre-trained models with varying architectures and complexities. The singular requisite
action in relation to the models entails the application of post-training quantisation (Section 6.1).

The design of our framework was driven by the fact that satisfying SLOs depends not only on the
target model but also on the specific target device, especially the processor in use. Consequently,
CARIn’s primary objective is to determine, at any given time, the most suitable model-processor1
pair (or pairs) for a specified device. Internally, our MOO framework expresses this as a DL-
based, device-centric problem, to effectively capture both the application’s SLOs and the unique
characteristics of the target device. Given the device-specific nature of our MOO formulation,
a distinct optimisation problem is formed for each given device, effectively circumventing the
challenge posed by device heterogeneity. Additionally, in order to facilitate real-time adaptation,
CARIn leverages the device’s intra-level heterogeneity, specifically the array of available processors,
as well as the range of solutions offered by the RASS solver, which allow the adoption of a swift
and efficient switching mechanism between execution plans.

3.2 Workflow
Figure 1 depicts CARIn’s operational flow, which is divided into the sequential offline and online
phases. The offline component is responsible for constructing and resolving the device-specificMOO
problem. Then, at runtime, the online component’s Runtime Manager (RM) constantly monitors the
application’s dynamic behaviour, ensuring real-time adaptation to emergent changes. Algorithm 1
presents a comprehensive top-level overview of our framework, delineating its primary components
and illustrating their main operations. These operations will be thoroughly elucidated in Section 4.
The input parameters of our framework are: (a) the designated DL task(s) associated with the
application, (b) the stipulated SLOs, and (c) the target device’s characteristics, while the outputs
consist of: (a) the set of solutions (designs D), and (b) the switching policy SP.

The specified DL task or tasks dictate the set of models to be considered during the optimisation
process. A model in CARIn is represented by the following tuple:

𝑚 = (𝑎𝑟𝑐ℎ, 𝑝𝑎𝑟𝑎𝑚𝑠, 𝑠in, 𝑡𝑎𝑠𝑘, 𝑑𝑠, 𝑝𝑟 )
where 𝑎𝑟𝑐ℎ is the model’s architecture (i.e. layers and connections), 𝑝𝑎𝑟𝑎𝑚𝑠 are the model’s trained
parameters, 𝑠in is the input size, 𝑡𝑎𝑠𝑘 is the target DL problem, 𝑑𝑠 is the name of the corresponding
DL testing dataset, and 𝑝𝑟 is the numerical precision to account for quantised models.
1Processor here refers also to the exact configuration of a given processor, e.g. threads in a CPU or precision in a GPU.
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Algorithm 1: CARIn’s end-to-end operation.
Input: DL task(s)

Target device
Application SLOs

Output: Designs, D
Switching Policy, SP

/* MOO Problem Formulation */
1 HW ← ObtainHardwareCharacteristics(Target device)
2 if app type == single-DNN then
3 X ← ConstructDecisionSpace(DL task,HW)
4 else
5 X ← ConstructDecisionSpace(DL tasks,HW)
6 end
7 𝑓𝑖 , 𝑔 𝑗 ← ExtractFunctions(Application SLOs)
/* Objective Function Evaluation */

8 𝑓𝑖 (𝑥), 𝑔 𝑗 (𝑥) ← EvaluateFunctions(X, 𝑓𝑖 , 𝑔 𝑗 )
/* MOO Problem Solver */

9 X′ ← {𝑥 | 𝑔 𝑗 (𝑥) ≤ 0} // apply constraints
10 𝑜𝑝𝑡 (𝑥) ← CalculateOptimality(X′)
11 X′s ← Sort(X′, 𝑜𝑝𝑡 )
12 D, SP← Search(X′s )
/* Runtime */

13 while true do
14 𝑐 ← Analyse(s) // c indicates a change in resource availability
15 if c == True then
16 𝑑new ← RM(D, SP, 𝑐) // select new design
17 end
18 end

The target device defines the hardware resources at the system’s disposal, which are represented
by the tuple:

ℎ𝑤 = (𝑐𝑒, 𝑜𝑝 (𝑐𝑒))
where 𝑐𝑒 ∈ CE is the compute engine (i.e. processor) performing the inference computations and
𝑜𝑝 (𝑐𝑒) is a set of options tied to the given processor, e.g. the number of CPU threads or the GPU’s
numerical precision. The tuple of tunable system parameters can be extended to capture a more
detailed space, e.g. by including the DVFS governor selection which determines the dynamic voltage
and frequency scaling policy of the device [61].
An individual model𝑚 running under the selected system parameters ℎ𝑤 represents a single

execution configuration:
𝑒 = ⟨𝑚,ℎ𝑤⟩ ∈ E (1)

During the MOO Problem Formulation stage (lines 1-7), CARIn considers every generated space
of execution configurations, E𝑖 , in order to form the problem’s decision space, X, depending on
whether the application requires single- or multi-DNN execution. At the same time, the application’s
SLOs delineate the MOO problem’s objective functions and constraints, denoted as 𝑓𝑖 and 𝑔 𝑗
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respectively. Once the problem is formulated for the target device, the Objective Function Evaluation
stage evaluates each function for every 𝑥 ∈ X (line 8). Following this, CARIn’s MOO Problem
Solver is poised to solve the MOO problem (lines 9-12). The functions CalculateOptimality, Sort,
and Search shown in Algorithm 1, which constitute the three stages of the solver, are discussed in
detail in Section 4.3.
In order for CARIn to accommodate runtime adaptation, it is important to establish a robust

system for perpetually monitoring the dynamic aspects of the executing application and the state
of the device itself. This ongoing vigilance enables timely recognition of abrupt alterations in
operational conditions, thereby facilitating immediate corrective measures. We call this subsystem
the Runtime Manager (RM). The output of CARIn’s solving algorithm consists of a setD of highest-
performing solutions, called designs, which are passed to RM along with the appropriate switching
policy (SP). Leveraging a collection of periodically captured statistics 𝑠 from the Application’s
runtime, the RM module has the ability to discern dynamic changes in resource allocation (𝑐 in
Algorithm 1) and rapidly switch to an alternative design 𝑑new to effectively and robustly meet the
application-level SLOs (lines 13-18).

4 MULTI-OBJECTIVE OPTIMISATION FRAMEWORK
Multi-objective optimisation (MOO) constitutes a mathematical and computational approach em-
ployed to find the best solutions or trade-offs in scenarios that involve multiple interrelated and, at
times, antagonistic objectives [15, 44]. The appropriateness of a MOO framework for our problem is
underscored by (a) the inherent nature of DL application SLOs, which typically comprise objectives
that exhibit conflicts, and (b) the inherent attribute of MOO to yield a solution space rich in diversity,
which, in turn, can enable dynamic adaptation.

4.1 MOO Problem Formulation
For CARIn’s DL-based MOO formulation, we adopt the following mathematical description:

min/max 𝑓𝑖 (𝑥) 1 ≤ 𝑖 ≤ 𝑁

subject to 𝑔 𝑗 (𝑥) = 𝑔 𝑗 (ℎ 𝑗 (𝑥)) ≤ 0, 1 ≤ 𝑗 ≤ 𝑃

where 𝑥 denotes the decision variable, 𝑁 is the number of objective functions, 𝑓𝑖 (𝑥) is the 𝑖-th
objective function, 𝑃 is the number of inequality constraints, and 𝑔 𝑗 (𝑥) is the 𝑗-th inequality
constraint, which is always a composite function of a given inner function ℎ 𝑗 (𝑥). Note that when
there is only a single objective function (𝑁 =1), then the problem is reduced to single-objective
optimisation (SOO). The problem’s objective functions and constraints are extracted from the
application’s SLOs, which can be split into two categories:
• Broad SLOs: Such objectives define the problem’s objective functions and come in the form of
⟨𝑚𝑖𝑛/𝑚𝑎𝑥, 𝑝⟩, where 𝑝 is a DL-related performance metric. For instance, ⟨𝑚𝑎𝑥,𝑚𝐼𝑜𝑈 ⟩ means
that the mean Intersection-over-Union (mIoU) accuracy metric should be maximised for an
image segmentation task. For CARIn, this objective translates to the maximisation of the
objective function 𝑓 (𝑥) = 𝐴(𝑥) =𝑚𝐼𝑜𝑈 (𝑥).
• Narrow SLOs: These objectives define the problem’s constraints and come in the form of〈

𝑚𝑖𝑛/𝑚𝑎𝑥/𝑎𝑣𝑔/𝑠𝑡𝑑/𝑛th, 𝑝, 𝑣
〉
, which means that the minimum, maximum, average, standard

deviation or 𝑛th percentile value of 𝑝 is bounded by a target value 𝑣 . For instance, ⟨𝑎𝑣𝑔, 𝐿, 15⟩
means that the average latency needs to be less than 15 ms, which translates to the constraint
𝑔(𝑥) ≤ 0, where 𝑔(𝑥) = 𝑔(ℎ(𝑥)) = 𝑔(𝐿(𝑥)) = 𝐿(𝑥) − 15.

Given that both types of objectives concern the same set of performance metrics, it follows
that both the objective and inner functions, 𝑓𝑖 (𝑥) and ℎ 𝑗 (𝑥), share a common function space,
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denoted by F , which encompasses the entirety of available functions associated with various DL
performance metrics. For this reason, in cases where the application defines constraints without
explicitly specifying objective functions, CARIn can duly regard all specified inner functions ℎ 𝑗 (𝑥)
as objective functions as well.

4.1.1 Single-DNN Setting. When there is only one DL task to optimise, the decision variable 𝑥 is a
single execution configuration 𝑒 , as defined in Equation 1. Therefore, the execution configuration
space E effectively transforms into the decision space X:

𝑥single = 𝑒 = ⟨𝑚,ℎ𝑤⟩ ∈ Xsingle = E
For the objective functions, CARIn leverages the following DNN-specific performance metrics:
• Size (𝑆): Size is conventionally represented by either the total count of parameters within the
neural network or the physical file size of the model stored in memory.
• Workload (𝑊 ): This metric is typically measured in terms of numerical operations, such as
floating-point operations (FLOPs) or multiply-accumulate operations (MACs).
• Accuracy (𝐴): Accuracy is contingent upon the specific DL task in question, e.g. top-1 accuracy
for classification tasks or exact match for question answering tasks.
• Latency (𝐿): Latency delineates the temporal lag between the transmission of input data to
the DNN model and the reception of the corresponding output. It is quantified in units of
milliseconds or seconds.
• Throughput (𝑇𝑃 ): Throughput provides an indication of the model’s real-time processing
capabilities and is computed as the total number of input samples (batch size), divided by the
total inference latency. This metric is denominated in samples per second (e.g. images per
second when images constitute the inputs).
• Energy Consumption (𝐸): This metric is of paramount importance for the evaluation of the
energy efficiency of DNN applications in resource-constrained environments and is measured
in energy units, such as watt-hours or joules.
• Memory Footprint (𝑀𝐹 ): Memory footprint encapsulates the extent of random-access memory
(RAM) required for the loading and execution of a DNN. It is traditionally assessed in terms
of memory size units, such as megabytes (MB) or gigabytes (GB).

Overall, the set of potential objective functions in single-DNN cases is denoted as:

Fsingle = {𝑆,𝑊 ,𝐴, 𝐿,𝑇𝑃, 𝐸,𝑀𝐹 }
collectively empowering a multifaceted assessment of DNN models and providing a holistic under-
standing of their performance across diverse dimensions.
It is important to recognise that the latency and energy consumption metrics are subject to

inherent fluctuations when executing DNNs on mobile devices. These fluctuations can arise due to
various factors, including device load, temperature, input values, and other environmental variables
(see Section 4.3.2). As a result, relying on a single, instantaneous value may not provide a robust
and representative assessment of system performance. To account for these fluctuations, CARIn
considers statistical measures, such as the average or maximum energy consumption or the variance
of the latency, as objective functions.

4.1.2 Multi-DNN Setting. When there are𝑀 independent DNNs to optimise jointly, the decision
variable 𝑥 comprises of 𝑀 distinct execution configurations 𝑒𝑖 , 1 ≤ 𝑖 ≤ 𝑀 . Hence, the decision
space X is an𝑀-dimensional space, where each component of the decision variable can separately
take values in the corresponding execution configuration space E𝑖 :

𝑥multi = {𝑒1, . . . , 𝑒𝑀 } = {⟨𝑚,ℎ𝑤⟩1 , . . . , ⟨𝑚,ℎ𝑤⟩𝑀 } ∈ Xmulti = E1 × ... × E𝑀
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The array of potential objective functions is expansively broadened to encompass an additional
triad of performance metrics pertaining to parallel execution [12, 60]:
• Normalised Turnaround Time (𝑁𝑇𝑇 ): 𝑁𝑇𝑇 serves as a quantifier of the perceived execution
slowdown during multi-DNN execution. The 𝑁𝑇𝑇 for the 𝑖-th DNN is computed as:

𝑁𝑇𝑇𝑖 =
𝐿M𝑖

𝐿S
𝑖

where 𝐿S𝑖 and 𝐿M𝑖 are the average latencies of the 𝑖-th DNN under the single- and multi-DNN
modes. 𝑁𝑇𝑇𝑖 is a value greater than or equal to 1, with lower values indicating superior
performance. For the sake of standardisation across models, it is common practice to calculate
the average or maximum 𝑁𝑇𝑇 .
• System Throughput (𝑆𝑇𝑃 ): 𝑆𝑇𝑃 quantifies the accumulated single-DNN progress under
multi-DNN execution and is computed as:

𝑆𝑇𝑃 =

𝑀∑︁
𝑖=1

𝑁𝑃𝑖 =

𝑀∑︁
𝑖=1

1
𝑁𝑇𝑇𝑖

=

𝑀∑︁
𝑖=1

𝐿S𝑖

𝐿M
𝑖

where 𝑁𝑃𝑖 is the normalised progress of the 𝑖-th DNN. Its maximum magnitude is 𝑀 , with
higher values signifying enhanced performance.
• Fairness (𝐹 ): The concept of fairness in a multi-DNN execution environment is contingent
upon the equitable relative progress experienced by co-executing DNNs, in comparison
to their single-DNN execution counterparts. Fairness, as denoted herein, is quantified as
the minimum ratio of relative normalised progress rates observed among any two DNNs
concurrently operating within the system:

𝐹 = min
𝑖, 𝑗

𝑁𝑃𝑖

𝑁𝑃 𝑗

This metric adheres to a higher-is-better paradigm with values within the range [0, 1], where
0 signifies an absence of fairness and 1 perfect fairness.

As a consequence, we augment CARIn’s objective function set to encompass both single-DNN
metrics, which pertain to individual tasks or DNNs, and multi-DNN metrics, which characterise
the collective performance of the entire system during concurrent execution:

Fmulti = {𝑆𝑖 ,𝑊𝑖 , 𝐴𝑖 , 𝐿𝑖 ,𝑇𝑃𝑖 , 𝐸𝑖 , 𝑀𝐹𝑖 } ∪ {𝑆𝑇𝑃, 𝑁𝑇𝑇, 𝐹 }, 1 ≤ 𝑖 ≤ 𝑀

4.2 Objective Function Evaluation
Upon the formulation of the device-specific MOO problem, it becomes necessary to assess each
objective function across the entire set of decision variables 𝑥 ∈ X. Assessing these functions
is straightforward for certain objectives; however, it presents challenges for device-dependent
functions like 𝐸 and 𝑀𝐹 , and those relying on latency, including 𝐿, 𝑇𝑃 , 𝑆𝑇𝑃 , 𝑁𝑇𝑇 , and 𝐹 . The
approach adopted by CARIn for this evaluation involves the profiling of functions on individual
target devices. In practical terms, this entails the deployment of all candidate models on each
target device, followed by the measurement of each device-reliant objective function for all feasible
model-processor combinations. We acknowledge that this procedure, albeit comprehensive, is
inherently time-consuming and, in many instances, such as in multi-DNN cases, infeasible for
seamless integration into real-world scenarios and practical applications. However, the optimisation
of the evaluation process itself does not constitute a primary objective of this work. We extensively
discuss potential enhancements of this aspect in Section 8.
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4.3 MOO Problem Solver
Following the formulation of the problem and the evaluation of objective functions, the conclusive
stage involves resolving the optimisation problem. The initial step of the optimisation process is to
apply the problem’s constraints. Consequently, the decision variables are bound to the constrained
decision space X′, defined as:

X′ = {𝑥 | 𝑔 𝑗 (𝑥) ≤ 0,∀𝑗}
MOO problems are frequently addressed using evolutionary algorithms, such as NSGA-II, SMS-

EMOA, and MOEAD, or swarm-based algorithms, such as Ant Colony Optimisation (ACO) and
Particle Swarm Optimisation (PSO) [52]. These algorithms systematically explore the decision vari-
able space to discover the Pareto frontier, which represents the optimal trade-offs among conflicting
objectives. While these algorithms excel in identifying the optimal execution configuration, we
acknowledge that potential runtime issues may either alter the solution space, consequently affect-
ing the Pareto frontier of a MOO problem, or introduce new constraints that were not considered
during the problem’s formulation. Consequently, to address the potential decline in performance,
it becomes imperative to rerun these algorithms whenever a runtime issue arises, however, such
repetitive executions are impractical for real-life applications and systems.

To address this challenge, we introduce a runtime-aware sorting and search algorithm, denoted as
RASS, whose primary goal is to solve a device-specific MOO problem once, while concurrently ad-
dressing potential future runtime challenges. To achieve this, RASS considers both non-dominated
and dominated solutions in a predictive manner, estimating the impact of possible runtime issues.
In addition to providing the initial solution 𝑑0, RASS also yields a set of supplementary runtime
designs 𝑑𝑖 , which serve as a proactive measure for runtime adaptation, i.e. in instances where the
currently employed design encounters performance issues. This approach alleviates the need for
repetitive executions of optimisation algorithms.

The operation of RASS involves a sorting stage followed by a search stage. To accommodate both
non-dominated and dominated solutions, our solving algorithm initially sorts candidate solutions
according to their optimality (Section 4.3.1), a metric quantifying the distance from the problem’s
utopia point. Subsequently, based on this sorting, RASS identifies a set of solutions (Section 4.3.4)
representing the various execution plans of the application which correspond to possible runtime
issues (Section 4.3.2), along with a switching policy facilitating prompt transitioning between them
(Section 4.3.3) for the RM module.

4.3.1 Optimality. To quantify optimality for a given candidate solution 𝑥 ∈ X′, we first calculate
the weighted Mahalanobis distance between the solution’s objective vector, which is defined as
𝑓 (𝑥) = [𝑓1 (𝑥), 𝑓2 (𝑥), ..., 𝑓𝑛 (𝑥)], and the utopia point, represented as 𝑢𝑝 = [𝑢𝑝1, 𝑢𝑝2, ..., 𝑢𝑝𝑛]:

𝑑 (𝑥) =

√√
𝑛∑︁
𝑖=1

𝑤2
𝑖

[𝑓𝑖 (𝑥) − 𝑢𝑝𝑖 ]2

𝑠2
𝑖

where 𝑤𝑖 is the user-supplied weight for the 𝑖-th objective, 𝑠2𝑖 is the calculated variance of the
𝑖-th objective, and each component of the utopia point depends on the corresponding objective
function:

𝑢𝑝𝑖 =

{
max 𝑓𝑖 , if 𝑓𝑖 ∈ {𝐴,𝑇𝑃, 𝑆𝑇𝑃, 𝐹 }
min 𝑓𝑖 , if 𝑓𝑖 ∈ {𝑆,𝑊 , 𝐿, 𝐸,𝑀𝐹, 𝑁𝑇𝑇 }

By utilising the Mahalanobis distance, we effectively accommodate the disparate scales of the
diverse objectives. Consequently, optimality could also be regarded as a metric of fairness for the
problem’s objective functions. However, it is important to acknowledge that these functions may
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carry distinct significance for the problem, hence, we afford users the opportunity to define weights,
thereby introducing a formal mechanism for enabling tailored optimisation strategies. Notably, the
calculated distances range within the interval [0, 𝑑max], where the maximum distance is:

𝑑max =

√√
𝑛∑︁
𝑖=1

𝑤2
𝑖

(max 𝑓𝑖 −min 𝑓𝑖 )2

𝑠2
𝑖

This factor necessitates the use of normalisation, which results in the distance being confined to
the [0, 1] range:

𝑑s (𝑥) =
𝑑 (𝑥)
𝑑max

The optimality metric for each 𝑥 ∈ X′ can then formally be defined as the reciprocal of the scaled
weighted Mahalanobis distance, thus, its range extends from [1, +∞):

𝑜𝑝𝑡 (𝑥) = 1
𝑑s (𝑥)

Utilising these values, the candidate solutions are sorted in descending order, resulting in the
creation of the sorted decision space Xs.

4.3.2 Runtime Challenges. During the runtime of the application, amultitude of dynamic alterations
in the device’s resource availability may occur. These fluctuations impact our problem formulation
in different ways, thus necessitating targeted approaches for their management. CARIn focuses on
addressing two main challenges, regarding the processors and memory of the target device:
• Processor Overload or Overheating: Processor-related concerns manifest when the pro-
cessor at use is continuously subjected to sustained processing demands exceeding its peak
processing capacity, primarily due to resource-intensive computational tasks. The protracted
imposition of such an overload condition may subsequently lead to overheating, which means
the escalation of the SoC’s temperature to a critical and potentially harmful level. Overheating
may also result from insufficient cooling mechanisms or other impediments hindering the
effective dissipation of heat by the SoC. As a protective measure against potential harm,
mobile SoCs are equipped with thermal throttling capabilities, which are activated when
temperatures exceed predefined thresholds. Thermal throttling encompasses the deliberate
reduction of the processor’s clock speed and performance to mitigate heat generation and
maintain a safe temperature range. The intricate interplay between processor overload and
overheating significantly impacts performance and power consumption, underscoring the
significance of diligent management and effective mitigation strategies.
• Variability in RAM Utilisation: Owing to the multifaceted nature of mobile devices, the
utilisation of Random Access Memory (RAM) is also characterised by dynamic fluctuations.
Within the execution scope of an application, numerous ancillary applications, processes,
or services continually initiate and terminate in the background, potentially culminating in
an unforeseen saturation of RAM capacity. Consequently, this phenomenon may precipitate
performance-related challenges, encompassing lag, application crashes, and an overall decel-
eration of device functionality. Furthermore, the perpetual management of excessive RAM
consumption may also entail elevated power consumption, thereby engendering consequen-
tial ramifications.

4.3.3 Model/Processor Switching. In response to runtime fluctuations, CARIn’s RM adopts a
strategic approach that involves alterations to either the model (change model, CM), processor
(CP), or both (CB) within the current execution plan. These three fundamental adjustments serve
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as effective measures for mitigating the challenges encountered during runtime. To this end, we
introduce a prioritisation scheme. In the case of processor-related phenomena, CARIn prioritises
transferring DNN execution from the currently used processors to inactive ones (CP or CB). This
transition allows the overloaded or overheated processor to dissipate excess heat and gradually
restore its performance. In cases where migration is not a viable option, such as in devices limited
solely to CPU usage or multi-DNN scenarios where all processors are occupied, CARIn employs an
alternative approach which involves replacing the current model with one of reduced computational
workload (CM). Conversely, addressing the memory-related issue involves transitioning to a more
compact model either on the same (CM) or a different processor (CB).

4.3.4 Design Selection & Switching Policy. A primary principle guiding the design of RASS is
to ensure low complexity in order to facilitate rapid switching. This objective manifests in the
generation of a relatively small number of designs, which in turn offers two additional distinct
benefits: firstly, minimise storage requirements for the models; and secondly, maintain a concise
switching policy comprising only a limited number of transition rules. For RM to determine the
appropriate timing to transition to a new execution plan, several system parameters, related to
(a) the workload distribution across processors and (b) the aggregate memory utilisation, need to
be continuously monitored. These parameters are represented by the boolean variables 𝑐𝑐𝑒 and 𝑐m,
indicating the presence of issues pertaining to a processor 𝑐𝑒 and the memory, respectively.

The first step in identifying the solutions to the problem involves identifying the sets of different
model-to-processor mappings viable for processor switching, i.e. for reallocating DL execution
to idle processors. Symbolising the number of these sets as 𝑇 , in consideration of RASS’s need
for simplicity, if 𝑇 > 3, we retain only the top three sets, corresponding to the highest attained
optimality scores. Next, we partition our sorted decision space X𝑠 into 𝑇 distinct subspaces X𝑖 ,
each corresponding to specific model-to-processor mappings and arranged in descending order of
observed optimality. Regarding processor-related phenomena, we select designs associated with
the highest optimality score within each set:

𝑑𝑖 = X𝑖 [0], 𝑖 = 0, . . . ,𝑇 − 1
For the memory-related issue, we extract the solution with the smallest memory footprint:

𝑑m = argmin
𝑥

𝑀𝐹 (𝑥), 𝑥 ∈ X𝑖 , 𝑖 = 0, . . . ,𝑇 − 1

Lastly, we extract complementary designs for two extreme (highly improbable) scenarios. The
first one arises when all related processors present an issue, while the memory does not, prompting
the extraction of the solution with the lightest workload:

𝑑w = argmin
𝑥

𝑊 (𝑥), 𝑥 ∈ X𝑖 , 𝑖 = 0, . . . ,𝑇 − 1

and the second scenario surfaces when both the processors and memory encounter issues simulta-
neously, necessitating the identification of the solution that strikes the optimal balance between
memory usage and workload among 𝑑𝑚 and 𝑑𝑤 :

𝑑wm =

{
𝑑w, if 𝐶 (𝑀𝐹 (𝑑w),𝑊 (𝑑w)) < 𝐶 (𝑀𝐹 (𝑑m),𝑊 (𝑑m))
𝑑m, else

where we use the normalised sum to compute the cost function𝐶 . Collectively, the set of designs is
denoted as:

D = {𝑑𝑖 , 𝑑m, 𝑑w}, 𝑖 = 0, . . . ,𝑇 − 1
therefore RASS can generate a maximum of five designs for a MOO problem, since 𝑇 ≤ 3.

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2024.



111:14 Ioannis Panopoulos, Stylianos I. Venieris, and Iakovos S. Venieris

After establishing the set of designs, RASS’s final step involves crafting the rule-based switching
policy, which serves as a reference for the RM module, guiding its decision-making process each
time the boolean variables 𝑐𝑐𝑒 or 𝑐m undergo a change in value. With the aim of ensuring simplicity
and conciseness in the rule set, we ensure that the selection of a new design is contingent solely
upon the state of the environmental variables and independent of the presently employed design.
The rationale behind the construction of the rules is deliberately straightforward, as demonstrated
in Section 7.2, where two representative use cases are presented and analysed.

5 IMPLEMENTATION
CARIn is implemented in Java for the Android operating system. Its primary integration leverages
the TensorFlow Lite (TFLite) package in its nightly build to facilitate on-device DNN execution, as
well as its delegates to access mobile accelerators. The concurrent execution of multiple DNNs is
achieved through the utilisation of the java.util.concurrent Java package.
In order to create the model suite used for our framework’s evaluation, i.e. for model retrieval,

training, and preparation, TensorFlow (v2.12.0) was employed in Python. Our framework seamlessly
interfaces with TensorFlow Hub and Hugging Face model repositories, which allows researchers to
easily access and experiment with a wide range of pre-trained models on publicly available datasets
for their specific use cases. Additionally, the TFLite Converter’s optimisation module was utilised
to apply post-training quantisation to the models in order to enhance inference speed, efficiency
and accelerator compatibility.
Regarding the objective function evaluation process, a diverse set of tools and libraries is em-

ployed. For accuracy assessments, we use custom evaluation scripts, as well as TFLite’s image
classification evaluation tool for the ImageNet ILSVRC 2012 task. Furthermore, to comprehensively
capture the model’s computational complexity and resource requirements, we use the tflite
Python package to count model parameters and FLOPs. Lastly, to assess the on-device performance
of the models, we employ the C++-based TFLite benchmark tool2. This tool offers a comprehensive
suite of measurements, encompassing execution time, memory utilisation, and other pertinent met-
rics, thereby providing a robust evaluation of the models’ real-world performance characteristics.

6 EXPERIMENTAL METHODOLOGY
In this section, we present the experimental methodology that underpins our research, offering
insight into the comprehensive approach we have undertaken to investigate our study’s core
objectives. We have structured this methodology into several key subsections, each addressing
a crucial aspect of our experimental design. Figure 2 depicts the toolflow used to conduct our
experiments.

6.1 Quantisation
CARIn embraces post-training quantisation as one of the most simple and mobile-friendly com-
pression methods presently available, with benefits not only in model size, but also in latency
and memory requirements. Additionally, quantisation becomes indispensable for the execution of
DNNs within DSPs or NPUs designed to primarily support integer models [22], thus unlocking
complete compatibility with mobile accelerators. Notably, additional methods which also introduce
trade-offs between accuracy and complexity, such as weight pruning or clustering, are orthogonal
to our framework and amenable to integration. The potential synergy resulting from the combined
application of various compression techniques merits further investigation.

2https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/tools/benchmark
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Fig. 2. Toolflow for the evaluation of CARIn.

Driven by the capabilities of the TFLite Converter, CARIn currently incorporates four distinct
quantisation techniques, namely half-precision floating-point (FP16), 8-bit dynamic range (DR8),
8-bit fixed-point with float fallback (FX8) and full 8-bit fixed-point (FFX8). Table 1 enumerates the
numerical types associated with inputs, outputs, weights, and activations for both the original
(FP32) and the quantised models. It is important to note that the data type of the weights defines
the storage requirements of the model. Specifically, FP16 quantisation leads to a 2× reduction in
model size, while the remaining schemes (DR8, FX8, and FFX8) yield a 4× reduction in size. The
operational procedures of these quantisation schemes are elucidated as follows:
• FP16, by default, employs 16-bit floating-point computations, yet it possesses the flexibility to
revert (fall back) to 32-bit floating-point (FP32) calculations when the hardware lacks support
for 16-bit arithmetic. In such instances, the weights undergo a dequantisation process to
32-bit before the first inference. Concurrently, the activations are stored in 32-bit format. The
most common processors with native support for FP16 operations are mobile GPUs.
• In the case of DR8, weights are represented with 8 bits, while activations persistently remain in
FP32. Nevertheless, certain activations may undergo dynamic quantisation during inference,
utilising quantised kernels for faster execution. The utilisation of fixed-point arithmetic,
whenever feasible, may result in reduced computation times compared to relying solely on
floating-point arithmetic, contingent on the specific model’s characteristics.
• FX8, analogous to FP16, represents an 8-bit equivalent and operates with integer kernels as
the default mode of execution. However, it retains the ability to utilise 32-bit operators when
integer implementations are unavailable on the given hardware (floating-point fallback).
Importantly, in this scheme, the converted model maintains inputs and outputs in floating-
point format, allowing the model itself to determine the quantisation parameters to minimise
accuracy loss.
• FFX8 enforces full integer quantization for all components of the model, encompassing
weights, activations, operations, inputs, and outputs. This stringent quantisation scheme
guarantees compatibility with integer-only devices and accelerators, such as microcontrollers,
DSPs, and NPUs.
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Table 1. Quantisation Schemes

Scheme Inputs & Outputs Weights Activations

FP32 fp32/int32/int64 fp32 fp32
FP16 fp32/int32/int64 fp16 fp16/fp32
DR8 fp32/int32/int64 int8 fp32
FX8 fp32/int32/int64 int8 int8/fp32
FFX8 int8/int32 int8 int8

6.2 Application Scenarios, Models and Tasks
In the following part, we outline four discrete application use cases, which form the bedrock of
our experimental evaluation. These application scenarios represent diverse real-world settings
in which our research findings will be tested and validated, providing valuable insights into the
effectiveness of our proposed formulation and methodology.
Notably, the first two scenarios pertain to the execution of a single DNN, while the later two

involve the execution of multiple DNNs in parallel, affording us the opportunity to assess perfor-
mance outcomes in instances where dependencies among multiple DNNs exist. This dichotomy is
instrumental in affording a comprehensive evaluation of our methodology’s versatility, applicability,
and scalability. We define specific SLOs for each use case and showcase the list of models to be
considered during evaluation, along with their device-independent evaluation, which includes
(a) the accuracy of both the original and quantised variants, (b) the computational workload in
FLOPs, and (c) the model size in terms of parameters.

6.2.1 Use Case #1 (UC1). In our first single-DNN scenario, we examine the practical application of
real-time image classification. In this setting, the camera of amobile device continuously captures
frames that require prompt and accurate recognition. The term "real-time" is qualified by a temporal
restriction mandating that the maximum permissible latency is 41.67 ms, underscoring the necessity
to uphold a recognition rate of no less than 24 frames per second (FPS). The principal objectives of
this use case encompass the joint maximisation of accuracy and throughput. Mathematically, this
MOO problem comprises two objective functions and a single constraint:

max 𝐴(𝑥),𝑇𝑃 (𝑥)
subject to max𝐿(𝑥) ≤ 41.67 ms

For UC1 we used the ImageNet-1k dataset [47]. Table 2 lists the eight models under consideration,
which are drawn from four distinct families: MobileNets [48], EfficientNets [57], RegNets [46], and
MobileViTs [39]. The rationale behind this extensive model selection is to ensure a well-rounded
exploration of compact and mobile-friendly architectures that span a broad spectrum, encompassing
both conventional CNNs and emerging Transformer-based models. Each of these architectural
paradigms exhibits unique characteristics and design principles.
It is worth noting that we also contemplated the inclusion of higher-accuracy models, such as

NASNet and ConvNeXt, in our analysis. However, our assessment revealed that these models failed
to meet the stipulated latency constraint. Consequently, they were excluded from our study to
maintain adherence to the predefined performance criteria.

6.2.2 Use Case #2 (UC2). In our second single-DNN scenario, we study the task of text classifica-
tion, with a particular emphasis on the memory requirements of the models. To this end, we impose
a memory constraint, stipulating that the executing DNN’s maximum memory footprint must not
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Table 2. UC1 Models

DL Task Architecture Image FLOPs #Params Top-1 Accuracy (%)
Size FP32 FP16 DR8 FX8 FFX8

MobileNet V2 1.0 224x224 0.60 G 3.49 M 71.92 71.96 71.65 71.28 71.26
RegNetY 008 224x224 1.60 G 6.25 M 74.28 74.28 74.18 74.45 74.47
MobileViT XS 256x256 2.10 G 2.31 M 74.61 74.61 - - -

Image Classification EfficientNet Lite0 224x224 0.77 G 4.63 M 75.19 75.23 75.14 75.09 75.11
on ImageNet-1k MobileNet V2 1.4 224x224 1.16 G 6.09 M 75.66 75.68 75.47 75.41 75.45

RegNetY 016 224x224 3.23 G 11.18 M 76.76 76.76 76.62 76.92 76.84
MobileViT S 256x256 4.06 G 5.57 M 78.31 78.30 - - -
EfficientNet Lite4 300x300 5.11 G 12.95 M 80.81 80.80 80.78 80.69 80.71

Table 3. UC2 Models

DL Task Architecture Sequence FLOPs #Params Top-1 Accuracy (%)
Length FP32 FP16 DR8 FX8 FFX8

Text Classification BERT-L2-H128 64 0.05 G 4.31 M 92.10 92.10 91.90 91.75 91.75

on Emotions XtremeDistil-L6-H256 64 0.63 G 12.57 M 93.30 93.30 93.20 93.15 93.20
MobileBERT-L24-H512 64 2.66 G 24.33 M 93.80 93.80 93.80 93.65 94.10

exceed 90 MB. The objectives of this use case revolve around three critical factors: minimising the
average latency, reducing the model size, and maximising accuracy. Mathematically, this MOO
problem encompasses three objective functions and a singular constraint:

min 𝐿(𝑥), 𝑆 (𝑥)
max 𝐴(𝑥)

subject to 𝑀𝐹 (𝑥) ≤ 90 MB

For UC2, we obtained three pre-trained Transformer models on various large datasets, including
Reddit comments and 2ORC citation pairs, and subsequently fine-tuned them on Emotions [50], a
dataset comprising of English Twitter messages which is employed for the task of classifying input
sequences into six distinct emotions. We adopted the dataset’s split configuration, which allocated
16k samples for training, 2k for validation, and 2k for testing. The reported top-1 accuracy corre-
sponds to the dataset’s test set. The selected models, detailed in Table 3, encompass the traditional
BERT architecture in a lightweight version, alongside two mobile-grade models: XtremeDistil [41]
and MobileBERT [55]. The letter "L" in each model’s name stands for the number of Transformer
layers and "H" stands for the hidden dimension. In preparation for training, we further optimised
BERT and XtremeDistil to enhance mobile-friendliness by replacing the GELU activation function
with ReLU and substituting Layer Normalisation with Batch Normalisation [42].

6.2.3 Use Case #3 (UC3). In our first multi-DNN scenario, we employ two DNNs for the purpose
of scene recognition. One DNN is dedicated to processing and classifying images, while the other
can process audio data in order to identify sounds from the device’s surroundings. These models
operate concurrently, running in parallel, and their outputs are collectively utilised to determine
the specific scene within which the mobile device is situated.

In this scenario, we seek to minimise both the average latency and its standard deviation, while
simultaneously maximising the attained accuracy. We impose two latency constraints for both tasks,
mandating that (a) the average latency remains consistently below 100 ms to ensure near-real-time
responsiveness, and (b) the standard deviation of latency stays below 10 ms for minimal fluctuations.
The inclusion of the latency’s standard deviation aims to minimise performance variability, which
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Table 4. UC3 Models

DL Task Architecture Input FLOPs #Params Accuracy
Size FP32 FP16 DR8 FX8 FFX8

Scene Classification EfficientNet Lite0 224x224 0.59 G 3.44 M 69.78 69.70 68.96 69.18 69.18

on MIT Indoor Scenes EfficientNet Lite2 260x260 1.51 G 4.87 M 76.72 76.72 77.16 77.69 77.54
EfficientNet Lite4 300x300 4.57 G 11.76 M 79.33 79.33 79.18 79.78 79.48

Audio Classification YAMNet 15600 0.14 G 3.75 M 0.3756 0.3757 0.3620 - -on AudioSet

still constitutes a withstanding challenge for on-device inference [66]. Mathematically, this MOO
problem is formulated as:

min 𝐿𝑖 (𝑥), 𝜎𝐿𝑖 (𝑥)
max 𝐴𝑖 (𝑥), 𝑖 = 1, 2

subject to 𝐿𝑖 (𝑥) ≤ 100 ms, 𝜎𝐿𝑖 (𝑥) ≤ 10 ms

Table 4 presents the models for each task. For the vision task, we fine-tuned three EfficientNet
Lite models on the MIT Indoor Scenes dataset [45], which includes 67 classes and 100 images
per class (80 for training and 20 for testing). We report the top-1 accuracy on the test set. For
the audio task, we use YAMNet, which is trained on the AudioSet dataset [14] for multi-label
classification. The dataset consists of 521 sound events (classes) and 18k samples. We report the
mean average precision (mAP) on the validation set. YAMNet’s input waveform can vary in length.
In our experiments, we use the model’s minimum possible length of 975 ms, which corresponds to
15600 input samples and a total workload of 0.14 GFLOPs.

6.2.4 Use Case #4 (UC4). In our second multi-DNN scenario, we deploy three distinct models
designed for facial attribute prediction tasks, namely gender, age and ethnicity estimation. These
models are conceptualised as the second stage of a face detection and attribute prediction pipeline,
wherein they operate concurrently on the same set of input images. As such, it is imperative for
these models to adhere to stringent latency constraints to ensure minimal impact on the overall
pipeline. UC4’s objectives revolve around the collective optimisation of five key metrics for each
model, specifically average latency, standard deviation of latency, size, memory footprint and
accuracy, all while adhering to a maximum latency threshold of 10 ms. Formally:

min 𝐿𝑖 (𝑥), 𝜎𝐿𝑖 (𝑥), 𝑆𝑖 (𝑥), 𝑀𝐹𝑖 (𝑥)
max 𝐴𝑖 (𝑥), 𝑖 = 1, 2, 3

subject to max𝐿𝑖 (𝑥) ≤ 10 ms

In UC4, the training data are sourced from the UTKFace dataset [81]. To ensure relevance to
real-time applications, the dataset is filtered to retain samples corresponding to the age range of
18-75. Consequently, the utilised dataset comprises 18.6k facial images, partitioned into training,
validation, and testing sets with a ratio of 72/8/20, respectively. The employed models leverage
MobileNetV2 as the backbone architecture, extracting 576 features of size 4×4, which are used for
predicting the outcomes across the three distinct facial attribute prediction tasks. Notably, UC4
stands as the sole task within our study that incorporates batching during inference. Specifically,
the models are configured with a batch size of 4, a choice motivated by the common case where
the preceding face detection component identifies multiple faces within a single image. Table 5
details the attained accuracy metrics for each task on the filtered dataset’s test set: binary accuracy
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Table 5. UC4 Models

DL Task Architecture Image FLOPs #Params Accuracy
Size FP32 FP16 DR8 FX8 FFX8

Facial Attribute GenderNet-MNV2 62x62 0.04 G 0.66 M 95.12 94.95 94.90 94.79 94.90
Prediction AgeNet-MNV2 62x62 0.04 G 0.66 M 5.976 5.974 5.964 5.947 5.923
on UTKFace EthniNet-MNV2 62x62 0.04 G 0.66 M 78.17 78.04 78.55 79.30 79.14

Table 6. Target Devices

Device Google Pixel 7 Samsung Galaxy S20 FE Samsung Galaxy A71

Launch 2022, October 2020, October 2020, January
SoC Tensor G2 Exynos 990 Snapdragon 730

CPU
2×2.85 GHz Cortex-X1 2×2.73 GHz Exynos M5 2×2.20 GHz Kryo 470 Gold2×2.35 GHz Cortex-A76 2×2.50 GHz Cortex-A76 6×1.80 GHz Kryo 470 Silver4×1.80 GHz Cortex-A55 4×2.00 GHz Cortex-A55

GPU Mali-G710 MP7 @850 MHz Mali-G77 MP11 @800 MHz Adreno 618 @700 MHz
NPU Tensor Processing Unit ✓ Hexagon Tensor Accelerator
RAM 8 GB @3200 MHz 6 GB @2750 MHz 6 GB @1866 MHz
TDP 7 W 9 W 5 W

for gender recognition, mean absolute error for age recognition, and top-1 accuracy for ethnicity
recognition across 5 output classes.

6.3 Mobile Devices
In our study, we have selected three smartphones for our evaluation: Google Pixel 7, Samsung
Galaxy S20 FE, and Samsung Galaxy A71. These devices have been deliberately chosen to represent
distinct categories within the modern mobile phone landscape. A71 serves as an archetype of a
mid-tier device, while S20 and P7 exemplify the high-end category, showcasing state-of-the-art
features and cutting-edge technology. A detailed overview of the specifications and processing
capabilities of these smartphones is shown in Table 6.
Each of the three devices is equipped with its own NPU. Concretely, P7 incorporates a custom

mobile-oriented Tensor Processing Unit (TPU), S20 features the EDEN API, which grants access
to the Exynos NPU for fixed-point models and specialised GPU kernels for floating-point models,
and lastly, A71 hosts the Hexagon Tensor Accelerator (HTA), a dedicated compute engine for
fixed-point CNNs. Additionally, it is noteworthy that among these three devices, only A71 offers
access to the device’s DSP for DNN inference. Therefore, we result in the following compute engine
sets for each device:

CEP7 = CES20 = {CPU,GPU,NPU}
CEA71 = {CPU,GPU,NPU,DSP}

6.4 Profiling Details
In this section, we present the available configuration options for each compute engine, 𝑜𝑝 (𝑐𝑒),
within the context of an execution plan’s tunable hardware parameters, which are employed by
CARIn during the profiling phase of the device-specific objective functions. In the case of CPUs,
we have the capability to tune the number of threads employed for multithreading and utilise the
XNNPACK delegate, which serves as a back-end for the CPU, leveraging the XNNPACK library
to provide highly optimised implementations for 32- and 16-bit floating-point computations, as
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well as symmetrically quantised DNN operations. Since all the devices under consideration are
equipped with 8 CPU cores, the set of tunable options can be defined as follows:

𝑜𝑝 (CPU) = {𝑁threads,XNNPACK}

where 𝑁threads = {1, 2, 4, 8} and XNNPACK = {TRUE, FALSE}, resulting in 8 distinct CPU execution
combinations. On the other hand, for GPUs and NPUs, CARIn exclusively employs fp16 arithmetic
when feasible, as it offers reduced latency without compromising accuracy:

𝑜𝑝 (GPU) = 𝑜𝑝 (NPU) = {precision = fp16}

Lastly, it should be noted that the DSP does not expose any configurable parameters, and thus
its set of options can be defined as an empty set:

𝑜𝑝 (DSP) = {}

In terms of the profiling process, we initiate each execution configuration with 5 warm-up runs
to stabilise the target processor’s performance and reduce variability. Subsequently, to gather
statistically significant latency and energy consumption values, we execute each experiment
100 times. Lastly, to maintain consistent device temperatures and mitigate the risk of overheating,
we incorporate a device idle period of 2 minutes prior to commencing the next set of runs.

7 RESULTS
This section presents the outcomes of our comprehensive evaluation of CARIn. Our findings
provide valuable insights into the effectiveness of our framework in mitigating the challenges
stemming from device heterogeneity and runtime fluctuations across both single- and multi-DNN
scenarios, while concurrently meeting predetermined SLOs.

7.1 Designs
Our initial assessment focuses on evaluating the performance of CARIn’s designs within each
available state, i.e. single processor or combinations of processors for single- and multi-DNN
applications respectively.

7.1.1 Comparison Methods. To comprehensively evaluate CARIn’s performance against existing
methodologies, we employ three simple and empirical baselines and additionally compare against
our earlier work, OODIn. Our baseline methods are formulated upon empirical observations to
offer a fundamental level of performance and aid in setting a minimum performance expectation in
real-world applications.
• Single-architecture baseline: The effectiveness of CARIn is contrasted with the traditional
approach of considering a single model architecture, even if it is also accompanied by its
quantised versions. This paradigm typically revolves around the selection of the model with
the highest accuracy, optimal memory efficiency, compact size, and other relevant criteria.
• Transferred baseline: To assess the extent to which CARIn addresses device heterogeneity, we
utilise the transferred baseline, where the MOO problem is solved on a specific device, and the
resultant designs are then applied to different devices. This baseline, being device-agnostic,
overlooks the inherent characteristics and limitations of individual devices.
• Multi-DNN-unaware baseline: The third baseline assesses the efficacy of our framework in
handling concurrent model executions, particularly its capability to generate optimal model-
to-processor mappings for multi-DNN workloads. The multi-DNN-unaware baseline dissects
a multi-DNN MOO problem into 𝑀 single-DNN uncorrelated problems, solves each one
independently and then combines the solutions.
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Fig. 4. UC2 evaluation.

• OODIn [61]: In our prior research, we utilised the weighted sum method as a means to address
MOO problems. More precisely, OODIn aims to maximise the weighted sum obtained from
the normalised objective functions. This approach fails to account for the inherent scale
discrepancies among the diverse objective functions, particularly evident in DLmetrics. While
the utilisation of assigned weights may potentially mitigate this limitation, it necessitates
prior knowledge of the statistical characteristics of the functions involved. When dealing
with multi-DNN configurations, OODIn would operate as the multi-DNN-unaware baseline
presented above, differing only in its utilisation of the weighted sum method instead of
computing optimalities.

7.1.2 Single-DNN Execution. Figures 3 and 4 delineate the benefits of CARIn in relation to the
optimality metric for the two single-DNN use cases. We compare against two single-architecture
baselines, specifically using the model with the highest accuracy (best accuracy, B-A) and the
model with the smallest size (best size, B-S), the transferred baselines from the other two devices,
collectively designated as 𝑇𝐴71, 𝑇𝑆20 and 𝑇𝑃7, and OODIn. The initial designs 𝑑0 for each device are
prominently indicated, affirming the presence of device heterogeneity. Patterned bars in the figures
highlight instances where certain baselines fail to yield a solution due to non-compliance with the
problem’s constraints (denoted by !) or inapplicability to different devices (denoted by N/A).
Takeaways: Our framework achieves a substantial improvement, with an average gain of 1.19×

and 1.57× (up to 1.46× and 1.92×) over the B-A and B-S baselines, respectively. It is noteworthy that
these baselines, primarily designed for SOO problems, prove inadequate in capturing the multi-objective
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nature inherent in DL applications. Regarding the transferred baselines, CARIn achieves an average
improvement of 1.17× in optimality (up to 1.84×). Importantly, it not only enhances overall optimality,
but also exhibits improvements across all considered objective functions. Specifically, for UC1, we
observe an average increase of 0.156 units in accuracy and a 32.7% boost in throughput, and for UC2,
observable improvements include an average reduction of 2.8 MB in model size and a notable 19.9%
latency speedup at the same accuracy level. Compared to OODIn, an optimality increase of 1.5× is
achieved in average (up to 1.99×).

7.1.3 Multi-DNN Execution. Figures 5 and 6 show the benefits of the CARIn framework concerning
the optimality metric in the context of the two multi-DNN use cases. In these scenarios, we compare
against the multi-DNN-unaware baseline, the transferred baselines from other devices, and OODIn.
The horizontal axis illustrates combinations of processors for each device. In the case of UC3, all
possible combinations are presented, while for UC4, due to the considerable number of combinations,
we organise and display them based on optimality, showcasing the top 5 for each device.

Takeaways: In the context of UC3, CARIn delivers a significant average optimality improvement of
1.47× across devices (up to 3.24×) over the multi-DNN-unaware baseline and an even more substantial
gain of 1.87× (up to 4.06×) over the transferred baselines. Notably, these enhancements extend across
all specified objectives. Compared to OODIn, we observe a 2.83× improvement in optimality (up to
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Table 7. Selected designs and switching policy for the single-DNN UC1 scenario on S20.

𝒄CPU 𝒄GPU 𝒄NPU 𝒄m 𝒅new

F - - F 𝑑0 =
〈
EfficientNet Lite0 FFX8,CPU4,T

〉
T F - F 𝑑1 = ⟨EfficientNet Lite0 FP16,GPU⟩
T T F F 𝑑2 = ⟨MobileNet V2 1.4 FP16,NPU⟩
T T T F 𝑑w =

〈
MobileNet V2 1.0 FX8,CPU4,T

〉
T T T T 𝑑wm ≡ 𝑑w
- - - T 𝑑m =

〈
EfficientNet Lite0 FX8,CPU8,F

〉
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Fig. 7. CARIn’s runtime behaviour targeting the single-DNN UC1 scenario on S20.

10.69×). Meanwhile, UC4 poses a distinctive challenge, where the majority of baselines struggle to
produce a viable solution, primarily due to their inability to satisfy the stringent latency constraints
inherent in this use case, underscoring the intricacy of UC4. It is noteworthy that, given the utilisation
of a singular model per task, instances where baselines do not fail result in performance parity with our
framework, emphasising the importance of accommodating a diverse array of models for each task.

7.2 Runtime Adaptation
In this section, we assess the responsiveness of the Runtime Manager (RM) and its adept utilisation
of designs generated by RASS to dynamically adapt to a series of runtime fluctuations. For our
evaluation, we target the UC1 single-DNN scenario on S20 and the UC3 multi-DNN scenario on
A71. Through this experiment, we aim to demonstrate the efficacy of the RM module to seamlessly
respond to dynamic runtime conditions, thereby validating its role in enhancing the adaptability
and performance of CARIn across diverse use cases and devices.

7.2.1 Single-DNN Execution. Table 7 presents the selected designs and switching policy, while
Figure 7 depicts the behaviour of RM in the single-DNN scenario. The initial design for UC1 on
S20, 𝑑0, involves the utilisation of EfficientNet Lite0 FFX8 on the CPU with 4 threads and the
enabled XNNPACK library, resulting in 75.11% accuracy and a 16 MB memory footprint. As the
CPU gradually becomes overloaded, the throughput experiences a decline until RM identifies an
alternative design as the current highest-performing solution. The new configuration, 𝑑1, entails the
use of EfficientNet Lite0 FP16 on the GPU. Following further inferences, RM triggers another switch
due to an impending memory issue. In this instance, RASS has identified the memory-efficient
design, 𝑑m, to involve the device’s CPU.
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Table 8. Selected designs and switching policy for the multi-DNN UC3 scenario on A71.
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〈
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〉
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〉
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〉
}
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Fig. 8. CARIn’s runtime behaviour targeting the multi-DNN UC3 scenario on A71.

Takeaways: It is worth highlighting that despite modifications in the execution plan, our framework
consistently upholds accuracy levels, even when employing the memory-efficient design. This steadfast
commitment to preserving user Quality of Experience (QoE) underscores CARIn’s resilience in the face
of dynamic alterations.

7.2.2 Multi-DNN Execution. Table 8 and Figure 8 correspond to the multi-DNN scenario. In the
context of UC3, where two models with distinct workloads are employed, CARIn recognises the
heavier workload associated with the second task and acknowledges that this specific task is
primarily responsible for triggering the switching mechanisms. The figure illustrates the average
latency, standard deviation of latency, and accuracy for the second task, as well as the combined
memory footprint of both models. UC3 involves the processing of audio data, introducing the
potential use of the device’s DSP for data capture and processing. Given the likelihood of DSP
overload during DNN inference, suppose that the highest-performing GPU-based design, 𝑑1, is
currently employed with EfficientNet Lite2 FX8. However, due to the impending threat of a memory
issue arising from this design’s memory footprint, RM opts to switch to the memory-efficient
design, 𝑑m, resulting in a saving of 92 MB of RAM. Subsequently, as RM observes a reduction in
DSP overload, it triggers a switch to the highest-performing design, 𝑑0, characterised by lower
latency and reduced memory requirements. In the event of a potential DSP overload resurgence, RM
strategically avoids reverting to the GPU-based design to mitigate previous concerns of excessive
memory usage. Instead, it selects the next design in line, transferring the second model to the CPU
while maintaining accuracy levels.

Takeaways: It is important to acknowledge thatCARInmay not alwaysmaintain predefinedmetric
levels. As demonstrated in this instance, transitioning to the memory-efficient design resulted in an
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Table 9. OODIn’s solving time in milliseconds. Given that this time is inevitable whenever a runtime issue
occurs, it has the potential to become a bottleneck, thus impeding the seamless execution of a DL application.

Decision Space A71 S20 P7
Dimension Average Maximum Average Maximum Average Maximum

500 1.45 2.12 0.55 1.55 3.64 7.99
2000 2.80 5.94 1.70 3.04 4.94 9.38
5000 6.56 10.46 4.98 15.97 7.06 10.09
10000 12.14 16.07 11.09 34.25 10.41 13.38

Table 10. Storage requirements of CARIn and OODIn in MB.

A71 S20 P7
CARIn OODIn Reduction CARIn OODIn Reduction CARIn OODIn Reduction

UC1 13.83 276.36 19.98× 34.37 443.10 12.89× 34.19 443.10 12.96×
UC2 48.64 311.45 6.40× 40.98 311.45 7.60× 52.96 311.45 5.88×
UC3 25.74 205.22 7.97× 58.70 205.22 3.50× 52.81 205.22 3.89×
UC4 2.65 6.56 2.48× 3.95 6.56 1.66× 3.95 6.56 1.66×

8.5% decrease in accuracy and an increase in jitter. However, such occurrences are considered temporary
states of urgency, with a firm expectation that they will be swiftly rectified, thereby minimising
impact on user QoE. Notably, the rise in average latency or the standard deviation of latency does not
significantly affect user QoE, as these metrics already meet the specified latency constraints, which
precede the optimisation of the objectives.

7.2.3 Comparison with OODIn. In our previouswork, we introduced themodel/processor switching
technique to mitigate runtime fluctuations. However, OODIn lacks the ability to predict forthcoming
changes in resource availability, so upon detecting such events, the MOO problem necessitates
readjustment to the new conditions and subsequent resolution to determine the new highest-
performing solution. CARIn offers the advantage of solving the specified MOO problem once,
prior to application initiation, thus switching to a new execution plan during runtime happens
instantaneously and is based on the predetermined designs and switching policy. Table 9 presents
the average and maximum observed solution times of OODIn across diverse applications and
devices. The solution time primarily hinges on the number of objectives and the dimensionality of
the decision spaceX, contingent upon the number of DL tasks, utilised models per task, compression
techniques, and adjustable system parameters. Given that the time required for the TFLite interpreter
to load on the CPU is typically around 3-4 ms, it becomes evident that revisiting the MOO problem
can potentially become a bottleneck for the application, impacting the user’s QoE.
Aside from the time overhead incurred by repeated problem solving, OODIn also requires

constant access to the entire array of considered models, necessitating their storage on the user’s
device, which can impose limitations on the assortment of models and compression techniques
initially considered. Our framework obviates the necessity to store all model variants, requiring only
those selected by RASS. Table 10 elucidates this contrast in terms of model storage requirements
for every examined use case.
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8 LIMITATIONS & FUTURE DIRECTIONS
In spite of the challenges mitigated by CARIn, our system exhibits limitations that impede its
performance when deployed in practical scenarios. First, as mentioned in Section 4.2, the com-
putation of device-dependent metrics associated with objective functions or constraints across
all candidate solutions is unsuitable for realistic mobile applications due to its substantial time
requirements and the necessity of deploying entire models onto target devices, particularly within
expansive decision spaces. Within the broader landscape of related studies, numerous works have
harnessed performance prediction methodologies to estimate such metrics when executing DNNs
on specific hardware platforms, without resorting to direct measurements [9, 19, 25, 79]. These
models consider a range of inputs, encompassing (a) architectural characteristics of the DNN model
such as network topology, layer configurations, and overall complexity, (b) hardware specifications
including compute architecture, memory hierarchy, interconnectivity, and support for parallelism,
and (c) environmental parameters like batch size, input data characteristics, runtime conditions,
and temperature/power conditions. Such approaches are orthogonal to our framework and can be
integrated within CARIn to provide a more expedient alternative to exhaustive profiling. In the
future, the exploration of such methods is envisioned to furnish a comprehensive assessment of
our framework’s performance and suitability for real-world scenarios.

An additional limitation arises from the selection of models for evaluation. In the contemporary
landscape of generative artificial intelligence (AI) [5, 59], the inclusion of generative models, such
as autoregressive language models, becomes paramount. These models, characterised by their
ability to generate outputs sequentially based on previously generated tokens, impose heightened
demands [32, 76], particularly within the context of mobile environments [33]. Therefore, it is
imperative to account for such intricacies when assessing the efficacy of AI frameworks intended
for deployment in resource-constrained settings.

9 CONCLUSION
This research underscores the paramount significance of optimising the on-device execution of
DNNs to meet the evolving demands of artificial intelligence applications. Building upon the founda-
tional work of [61], the presented framework, CARIn, aims to spearhead progress in this direction.
While the challenges of device heterogeneity, runtime adaptation, and multi-DNN execution persist,
CARIn provides a novel and comprehensive solution towards alleviating them. The integration of
an expressive multi-objective optimisation (MOO) framework and the introduction of RASS as a
runtime-aware MOO solver manage to enable efficient adaptation to dynamic conditions while
adhering to user-specified SLOs. RASS stands out for its ability to foresee upcoming runtime issues
and generate a set of configurations which enable rapid, low-overhead adjustments in response to
environmental fluctuations.
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